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Abstract: Background: Predicting cognition decline in patients with mild cognitive impairment
(MCI) is crucial for identifying high-risk individuals and implementing effective management. To
improve predicting MCI-to-AD conversion, it is necessary to consider various factors using explain-
able machine learning (XAI) models which provide interpretability while maintaining predictive
accuracy. This study used the Explainable Boosting Machine (EBM) model with multimodal fea-
tures to predict the conversion of MCI to AD during different follow-up periods while providing
interpretability. Methods: This retrospective case-control study is conducted with data obtained
from the ADNI database, with records of 1042 MCI patients from 2006 to 2022 included. The ex-
posures included in this study were MRI biomarkers, cognitive scores, demographics, and clinical
features. The main outcome was AD conversion from aMCI during follow-up. The EBM model
was utilized to predict aMCI converting to AD based on three feature combinations, obtaining
interpretability while ensuring accuracy. Meanwhile, the interaction effect was considered in the
model. The three feature combinations were compared in different follow-up periods with accuracy,
sensitivity, specificity, and AUC-ROC. The global and local explanations are displayed by importance
ranking and feature interpretability plots. Results: The five-years prediction accuracy reached 85%
(AUC = 0.92) using both cognitive scores and MRI markers. Apart from accuracies, we obtained
features’ importance in different follow-up periods. In early stage of AD, the MRI markers play a
major role, while for middle-term, the cognitive scores are more important. Feature risk scoring plots
demonstrated insightful nonlinear interactive associations between selected factors and outcome. In
one-year prediction, lower right inferior temporal volume (<9000) is significantly associated with AD
conversion. For two-year prediction, low left inferior temporal thickness (<2) is most critical. For
three-year prediction, higher FAQ scores (>4) is the most important. During four-year prediction,
APOE4 is the most critical. For five-year prediction, lower right entorhinal volume (<1000) is the
most critical feature. Conclusions: The established glass-box model EBMs with multimodal features
demonstrated a superior ability with detailed interpretability in predicting AD conversion from
MCI. Multi features with significant importance were identified. Further study may be of signifi-
cance to determine whether the established prediction tool would improve clinical management for
AD patients.
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1. Introduction

Alzheimer’s disease (AD) is a degenerative chronic brain disease that primarily affects
individuals above 65 years old. According to the World Health Organization (WHO),
approximately 50 million individuals are living with AD, and this number is expected to
triple by 2050 [1]. Unfortunately, there is currently no cure for AD, and existing treatments
can only help slow its progression. It is essential to diagnose AD at an early stage, as the
available treatment options are most effective during the early stages of the disease [2].

Mild Cognitive Impairment (MCI) can be regarded as an early stage of AD or pre-
AD. Over 33% of MCI patients will progress to AD within five or more years [3]. Thus,
predicting the progression from MCI to AD is crucial for effective treatment and would
benefit the well-being of AD patients, as well as their families [4].

Magnetic Resonance Imaging (MRI)-based markers have gained attention in recent
decades for the diagnosis of AD and predicting the conversion from MCI to AD, which is a
typical multi-modal data in clinical practice [5].

The use of multi-modal data for building diagnostic systems has been highly encour-
aged because it enhances predictive performance [6]. In order to processing the multi-modal
data, numerous machine learning (ML) techniques, especially deep learning techniques,
have been used for identifying the progress of AD and predicting the converting to AD
from MCI [7]. However, the practical application of ML-based prediction systems in the
medical scenario has been hindered by its neglect of interpretability concerns, as complex
models usually tend to sacrifice interpretability for accuracy.

Clinical experts are hesitant to trust black-box models that lack comprehensive and
easy-to-understand explanations, despite their high performance [8]. Therefore, balancing
interpretability and accuracy is crucial in various fields, especially in the medical field [9].
Recent advancements in eXplainable Artificial Intelligence (XAI) provide methods for
understanding complex models and explaining their decisions, so as to bridge the gap
between academic research and effective utilization in medical practice [10].

The Explainable Boosting Machine (EBM) model is one of them. The interpretability
provided by the EBM model comes from its own mathematical formula and does not
require the use of other values, making it inherently explainable. Moreover, it can ensure
performance metrics comparable to complex black-box models. Furthermore, EBM can
also take into account the interaction effects of certain factors [11].

Some researchers have applied the EBM model to predict severe retinopathy of prema-
turity or Parkinson’s and other diseases, achieving model interpretability while ensuring
accuracy [12,13]. However, with the literature review, we found there is only limited
research on predicting the conversion from MCI to AD using the EBM model. Moreover,
they only had a relatively short follow-up time or just one follow-up visit, making it hard
to achieve long-term prediction [14].

To improve the accuracy of predicting MCI to AD conversion, it is necessary to consider
various factors that may impact the prediction model. Future research could investigate
the potential interaction effects of demographic factors on prediction accuracy and explore
additional relevant factors to enhance the model’s performance.

In this study, we aimed to establish an EBM model to predict whether patients with
MCI will convert to AD in future follow-up periods (i.e., at 1, 2, 3, 4, and 5 years) using the
data obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

The main contributions of this article are as follows: (I) We evaluate, for the first time,
the performance of EBM predicting the conversion from MCI to AD during a follow-up
period of 1–5 years by using MRI, cognitive measures, and social–demographical–clinical
measurements versus using only one of the two modalities. (II) We investigate the changing
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of importance of each feature at different follow-up stages. (III) We provide the visualized
results about the contributions of each factor to the conversion from MCI to AD, as well as
possible interactive contributions. (IV) We offer local explanations for each individual’s
prediction decision.

2. Method
2.1. Data Source

The data involved in this study were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (https://adni.loni.usc.edu (accessed on 22 April
2022)). The ADNI database was launched as a public–private partnership in 2003. The
primary objective of ADNI database has been to assess whether a combination of MRI,
PET, clinical, neuropsychological assessments, and other biological markers can effectively
measure the progression of aMCI and early AD. The ADNI project was approved by the
Review Board of each participant site, and all participants provided written informed
consent at the time of enrollment, including permission for data sharing and analysis [15].

The samples involved in this study was consisted of 1042 Amnestic MCI individuals
at baseline from ADNI1, ADNI2, ADNI3, and ADNIGO, which are different phases of
ADNI program. Our feature set includes baseline demographic data such as age, gender,
years of education, as well as clinical such as APOE4 status, ADAS13, MMSE, CDRSB,
and MRI-related measures, which were used as inputs to the EBMs [16–19]. The response
variable is the cognitive status diagnosis of each patient during a specific follow-up period
in the future. As for the inclusion and exclusion criteria for the participation, we only chose
those aMCI participations with complete data

2.2. MRI Image Preprocessing

The MRI images were processed with FreeSurfer software (version 7.3.2) using the
standard cross-sectional pipeline. The preprocessing of the MRI image was achieved
through nonparametric nonuniform intensity normalization (N3)-based bias field correction.
To ensure consistency across all images, registration was performed to ensure that they were
in the same orientation and roughly the same spatial correspondence. After brain extraction
and affine transformation, all images were reviewed by a well-trained professional who
visually inspected them. Scans that had severe MRI artifacts, brain extraction failure, or
poor registration were excluded from further analysis. By following these preprocessing
steps, we ensured that the MRI images used in our study were of high quality and free
from potential sources of bias [20].

2.3. Statistical Analysis
2.3.1. Feature Selection

According to our research purpose and the literature review, relevant factors taken into
consideration can be classified into three modalities including scores of multi-types of neurocog-
nitive scales, MRI measurements, and social–demographical–clinical features [16–19].

For scores of neurocognitive scales, we explored the potential prognostic value of
baseline neurocognitive scores obtained from the ADNI dataset. Specifically, we included
scores from the ADAS-cog-13, and the Mini-Mental State Examination (MMSE), Functional
Activities Questionnaire (FAQ), as well as the Clinical Dementia Rating Scale Sum of Boxes
(CDR-SB). For MRI measurements, we selected the MRI results that may be related to AD.
They contain the volume of left and right hippocampus and amygdala, and the volume
and thickness of left and right entorhinal and inferior temporal. Social–demographical–
clinical features contained the individuals’ age, gender, education attainment, diagnose
at baseline (early or late MCI, abbreviated as DX_bl), and APOE4. In total, we included
21 relevant factors.

Previous research has also suggested that the prognostic value of neurocognitive
scores may vary, depending on the remaining time to the onset of dementia [21]. Thus,
the outcomes in this study are defined as the future clinical statuses (convert to AD or

https://adni.loni.usc.edu
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not) during follow-up within 1, 2, 3, 4, and 5 years of the same population. It is worth
mentioning that other dementia types were excluded from the analyses. This is to explore
the relationship between influential variables and response variables in our study to
gain a better understanding of the potential utility of these measures in predicting future
cognitive decline.

2.3.2. Explainable Machine Learning Analysis

This study employed interpretable ML methods to analyze the factors influencing the
conversion from MCI to AD over different follow-up periods and predict the likelihood of
such conversion within different follow-up intervals. The EBM algorithm was utilized in
this study. The EBM is an explainable ML algorithm that combines Generalized Additive
Models (GAMs) with gradient boosting [11].

GAMs are types of regression models that allow for flexible modeling of nonlinear
relationships between the response variable and the relevant variables [22]. They model
the relationship between the response variable y and the relevant variables x as a sum of
smooth functions s. The smooth functions s is typically modeled using splines or other
smoothing functions. The j indexes the relevant variables, g is the link function that adapts
the GAMs to different settings such as regression or classification as in Equation (1):

g(E[y]) = β0 + ∑ sj
(
xj
)

(1)

However, GAMs are limited to modeling only main effects, and do not account for
interactions between variables.

The EBM algorithm extends GAMs by adding pairwise interactions between relevant
variables, taking the name of GA2M, which can be defined as in Equation (2), where the
sij

(
xi, xj

)
donates the pairwise interactions [23].

g(E[y]) = β0 + ∑ sj
(
xj
)
+ ∑ sij

(
xi, xj

)
(2)

The two-dimensional term sij

(
xi, xj

)
can relate the response variable to pairs of inde-

pendent variables. These interactions are modeled using decision trees, which are then
combined with GAMs using gradient boosting algorithm.

The gradient boosting is a machine learning technique that sequentially adds weak
learners (i.e., decision trees with shallow depth, or linear models) to the model, with each
learner focusing on the errors made by the previous learners [24]. The resulting model is
a boosted ensemble of decision trees and GAMs, which can capture complex nonlinear
relationships and interactions between variables [25].

Moreover, EBMs are highly intelligible. The model produces transparent models
that can be easily understood by researchers. The EBM algorithm provides global feature
contribution that can be used to identify the most important relevant factors influential
factors in the model. By exploiting the additivity and modularity of these contributions,
it becomes possible to rank and visualize which features have the highest impact on the
model’s prediction [26].

EBMs not only provide a global interpretation of their predictions, but also offer local
interpretations by quantifying the contribution of each feature to the final prediction of
each subject [27]. To evaluate the local explanation of test participants, the most important
features in a single prediction were ranked. This ranking was obtained by calculating the
logit of the probability, which corresponds to the logarithm of the odds, using the logistic
link function g (Equation (2)). The final prediction of EBMs was obtained by summing the
logit of each feature.

Such a method enables medical experts to identify which features increase or decrease
the predicted probabilities made by the model. The EBMs strives to offer a fully inter-
pretable learning framework, as different to the technique of enhancing interpretability for a
black box classifier, such as SHAP or LIME. This approach can facilitate the comprehension
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of the factors influencing the predicted risk of a particular outcome for patients, thereby
enabling healthcare providers to enhance their decision-making processes [28].

Figure 1 illustrates the flowchart of this study. The dataset is divided into training
and test sets with a percentage, respectively, of 90% and 10%. In order to handle the
issues of data imbalance, the synthetic minority oversampling technique (SMOTE) is used.
In each follow-up period, we trained three EBM classifiers based on the following three
feature combinations:
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Comb. (a) both MRI-driven biomarkers and cognitive test scores, plus age, gender,
education, diagnose at baseline, and APOE4.
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Comb. (b) Cognitive test scores, plus age, gender, education, diagnose at baseline,
and APOE4.

Comb. (c) MRI-driven biomarkers, plus age, gender, education, diagnose at baseline,
and APOE4.

The baseline information was used as input of all EBMs and the converting AD or
not during follow-up period was used as output. All EBMs were tested with the 5-fold
cross validation.

The classifications performances were measured by accuracy, specificity, sensitivity,
and area under the receiver operating curve (AUC). Then, we used the trained EBM
classifier with feature sets in Comb. (a) in test sets to achieve the global explanation and
local explanation in each follow-up period.

All analyses were conducted with Python 3.9 and the package InterpretML 0.3.0,
which implements the EBM algorithm, on Windows 11 (2.10 GHz, 16 GB of RAM).

3. Results
3.1. Characteristics of Included Patients

At baseline, a total of 1042 patients with MCI were included in the study. The majority
of patients were male (58%) and the median age was 73 years (range: 68–78 years). The
median education level was 16 years (range: 14–18 years). The age at baseline, gender,
education at baseline, MMSE, CDRSB, and ADAS13 was almost homogenous. The dementia
individual percentage was much larger in long-term follow-up period. Table 1 reports the
demographic and the clinical information of the participants’ included in this study.

Table 1. Participants information in different follow-up duration.

Baseline 1 Year 2 Years 3 Years 4 Years 5 Years

DX

- MCI 1042 (total) 778 (88%) 512 (73%) 392 (68%) 246 (64%) 140 (62%)

- Dementia 109 (12%) 191 (27%) 188 (32%) 140 (36%) 85 (38%)

AGE at baseline 73 (68,78) 74 (68,79) 73 (68,78) 73 (68,78) 73 (68,78) 73 (68,78)
GENDER

- Female 428 (42%) 353 (40%) 290 (41%) 227 (39%) 150 (39%) 86 (38%)

- Male 614 (58%) 534 (60%) 413 (59%) 353 (61%) 236 (61%) 139 (62%)

Education at baseline 16 (14,18) 16 (14,18) 16 (14,18) 16 (14,18) 16 (14,18) 16 (14,18)
Median MMSE (First, third quantile) 28 (26,29) 28 (26,29) 27 (24,29) 27 (24,29) 27 (23,29) 26 (22,29)
Median FAQ (First, third quantile) 1 (0,5) 2 (0,7) 3 (0,10) 4 (1,13) 5 (1,15) 5 (1,18)
Median CDRSB (First, third quantile) 2 (1,2) 2 (1,2) 2 (1,4) 2 (1,4) 2 (1,5) 2 (1,6)
Median ADAS13 (First, third quantile) 16 (11,21) 17 (11,23) 18 (12,25) 18 (12,27) 18 (11,28) 18 (11,32)

Note: The DX and GENDER are reported in frequency (%), others are reported in median (First, third quantile).

We also investigate the corresponding information at follow-up period within 1, 2, 3,
4, and 5 years. At each visit of the ADNI study, patients were evaluated for AD based on
NINCDS-ADRDA criteria [29]. Other dementia types were not taken into account. The
AD percentages were 12%, 27%, 32%, 36%, and 38% within 1, 2, 3, 4, and 5 years follow up
periods, respectively, with an increasing trend.

3.2. Classification Performances

The model accuracy, sensitivity, specificity, and AUC value at each follow-up time
point are plotted in Figure 1 for the three feature combinations: Comb. (a), Comb. (b), and
Comb. (c)
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As shown in Figure 2, the classification AUC value derived from the joint use of Comb
(a) were found to be significantly higher than those of other feature combinations. The
mean AUC using Comb (a) displayed a characteristic pattern of first at about 0.9, then
decreasing, reaching a low point at 3 years, followed by a gradual increase until 5 years of
follow-up, to about 0.92.
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5 years of follow-up. Error bars show the associated standard deviation.

A similar trend was observed in the lines of the Comb (c), although with different
magnitudes, and the line of Comb (a) being slightly smaller than that of Comb (c).

During the short term of follow-up (e.g., one-year follow up), the models utilizing
Comb (a) and Comb (c) exhibited superior performance across nearly all metrics compared
to the model utilizing Comb (b). However, during the mid-term follow-up period, such as
2 or 3 years, nearly all performances of the three classifiers were lower than those of other
follow-up periods and showed a certain degree of false positives.

In the long-term follow-up period, the specificity of Comb (b) exceeded that of using
Comb (a) and Comb (c), while the sensitivity of using Comb (c) exceeded that of the
others. Nonetheless, the AUC is a more informative metric for evaluating imbalanced data
classification, as it takes into account both true positive rate (sensitivity) and false positive
rate (1-specificity) across different probability thresholds.

Overall, a high AUC value indicates a good balance between sensitivity and specificity,
regardless of class distribution imbalance. According to the AUC value, the Comb (a)
outperformed the other feature combinations’ performances in all periods (Figure 2d).
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3.3. Global and Local Explanation Learning Analysis

By utilizing EBMs model, we can not only obtain more accurate predictions, but also
find out why the model gives such prediction results, which variables play the main role,
and what proportion. Because the Comb (a) shows a relative better performance, we chose
this feature set to exhibit the following explainable learning analysis results.

The explanation contains global and local explanations, which are two critical con-
cepts in the field of explainable machine learning. It typically includes information about
important features, their relationships, and how they influence the model’s predictions. In
contrast, local explanation is instance-specific and provides insight into why a particular
prediction was made for a specific input. It highlights the most important features that
influenced the model’s decision and explains how they contributed to the prediction [30].

3.3.1. Global Explanation
Feature Importance

Global explanation provides an overall understanding of how a machine learning
model operates, offering a high-level summary of the model’s behavior. The importance of
each feature in predicting MCI individuals converting or not at each follow-up is shown
in Figure 3. In terms of MRI imaging data and cognitive test data, MRI imaging occupies
a more prominent position in both the short and long term follow up periods, with a
significantly higher proportion of top three rankings than cognitive tests, while in the mid-
term follow-up period, cognitive scale score is more important, with a higher proportion of
top three rankings compared to MRI imaging.

We also found that the importance rankings of the volume of the inferior temporal
and entorhinal are higher than that of their thickness in most cases.

For the short-term follow-up period, the inferior temporal was more important in
the imaging indicators. For the long-term follow-up period, the entorhinal cortex was
more important.

Uni-Factor Interpretation

Figure 4 illustrates the feature interpretability plots for the most significant variables
in predicting the follow-up periods. These plots, also known as risk profiles, depict the risk
score on the vertical axis and the actual value of the feature on the horizontal axis (upper
graphs in Figure 4). The bottom graphs in Figure 4 display the density or distribution of
the feature. A feature risk score above zero indicates a contribution to the positive class
classification (i.e., converting to AD), whereas a score below zero indicates a contribution
to the negative class classification (i.e., not converting to AD).

In the one-year follow-up period, lower right inferior temporal volume values
(<9000) are the most significant relevant factors of AD conversion (Figure 4a). During
the two-year follow-up period, a left inferior temporal thickness value lower than 2 is the
most critical feature in predicting AD conversion (Figure 4b). For the three-year follow-up
period, higher FAQ scores (>4) emerge as the most important factor in predicting AD
conversion (Figure 4c). In four years of follow-up, the APOE4 count of 1 or higher is the
most significant relevant factor of AD conversion (Figure 4d). Finally, in five years of
follow-up, lower right entorhinal volume values (<1000) are the most critical feature in
predicting AD conversion (Figure 4e).

Analysis of Interaction-Effects

As shown in Figure 3c, we noticed there are many pairwise interactions in the three-
year period prediction, and the AGE and APOE4 interaction is in the top 5, followed by
the DX_bl (Diagnose at baseline) and CDRSB interaction in the top 6, as shown in Figure 5,
which is the heat map of the two pair interaction.
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The closer the color is to yellow (indicating a positive score), the higher the risk of
conversion to AD. Conversely, the closer the color is to blue (indicating a negative score),
the lower the likelihood of conversion to AD. The heat map of AGE and APOE4 interaction
indicates that having 2 APOE4 and aging over 75 years old results to having higher risk to
convert to AD in three-year period, as shown in Figure 5a.

The heat map of DX_bl and CDRSB interaction (Figure 5b) indicates being diagnosed
as LMCI at baseline, and a CDRSB score greater than 5 results in having a higher risk to
convert AD in a three-year period. These two parts can be clearly seen in the figure close to
yellow (a positive score).
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3.3.2. Local Explanation

The local explanation focuses on training the local surrogate model to interpret the
individual predictions. According to the local explanation results, we can figure out what
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role each variable plays in the prediction (positive or negative) and its magnitude. Due
to the large number of patients, we cannot introduce them one by one. Thus, we selected
four patients in the three-year follow up period prediction ramdomly, two of which were
diagnosed with AD and two who were not diagnosed with AD, and the four were all
predicted correctly. In these figures, the bar of each variable facing to the right indicates
support for a prediction of 1: that this patient will convert to AD within three years. The
bar facing to the left is opposite. We can find that most of the variables support this patient
to convert to AD within three years in terms of Patients 1 and 2, and the CDRSB and FAQ
played an important role in their correct predictions (Supplementary Figures S1 and S2). As
for Patient 3 and 4, most variables support this patient will not convert to AD within three
years, and the interaction of DX_bl and CDRSB played a significant role in their correct
predictions (Supplementary Figures S3 and S4).

4. Discussion

The early detection of AD is clinically valuable to stop its progress at the early stages
and improve patients’ and their relatives’ quality of life. Our work is primarily based on
explainable EBM models that utilize multimodal features as inputs to predict whether
patients with MCI will convert to AD during follow-up periods of varying lengths. In this
study, we compared different modalities’ combinations, and found that in terms of accuracy,
sensitivity, specificity, and AUC, the use of Comb a) demonstrated superior performance,
for the most part, overusing a single modality. Especially in AUC and accuracy, the
superiority of utilizing Comb a) was consistently observed throughout the entire follow-up
period (Figure 2).

As shown in Figure 2, it is noteworthy that when predicting the progression of MCI in
a three-year period, the performance of the model is relatively less satisfactory compared
to other follow-up periods, particularly with some false positives. We assume that the
occurrence of this situation is due to a relatively brief follow-up period that did not
afford enough time for all prodromal AD participants to progress to a clinical diagnosis of
dementia: these false positives represent individuals whose diagnostic classification did
not change during the short-term follow-up period, despite the disease progressing and
eventually reaching the dementia stage at a later time point. To validate this hypothesis, we
examined the disease progression in these false positive cases. The results showed that 50%
of false-positive MCI patients would convert to AD at the 5-year follow-up, which is almost
four times the conversion rate to AD in the MCI population [31]. To be more specific, when
our model makes a false prediction of conversion to dementia within 3 years, it is likely
indicative of pathophysiological progression in the brain, but it may require more time for
the disease to advance to the dementia stage.

Some may question that, according to this hypothesis, the prediction should have
poor performance when forecasting for one-year follow up. It is well acknowledged that
AD is a slowly progressive disease [32], and predicting at the first year is approximate to
conducting a classification at the present time to determine whether a patient is MCI or
AD. While to our knowledge, in recent years, there are many studies use different machine
learning approach to address this problem, and achieve high quality classifications. Thus,
to some extent, the feasibility of predicting AD or MCI in the one-year follow up period is
achievable through technological means.

Moreover, to our current knowledge, using only cognitive tests to classify MCI and
AD at the present time cannot achieve a satisfactory level of accuracy. These also indirectly
indicate that the ranking of MRI results is more important in our short-term predictions
(e.g., one-year follow up) (Figure 3a). Actually, in our study, we found using only MRI for
short term predictions (e.g., one-year follow up) also yielded satisfactory performance.

During a five-years follow-up period prediction, if we fix the occurrence of AD as a
time point and trace back from it, this is equivalent to making predictions in the early stages
of AD. As shown in Figure 3e, we discovered that the volume and thickness of entorhinal



Brain Sci. 2023, 13, 1535 12 of 16

cortex rank high position. It is to say, the entorhinal cortex plays a crucial role in early AD
prediction, which supports previous findings in pathology [33].

For example, the thinning of the entorhinal cortex is a structural biomarker that is
sensitive to changes in AD over short periods of time and is closely related to the severity of
AD [34]. Moreover, existing research has demonstrated that the structure and pathological
damage of the entorhinal cortex play a significant role in the early memory impairment
observed in AD. Structural imaging studies have revealed that entorhinal cortex atrophy
occurs in the early stages of AD, with severe neuronal loss in the second and third cortical
layers of the entorhinal cortex reaching 70% and 40% of the total number of neurons,
respectively [35]. Furthermore, studies have shown that regional cerebral blood flow
in the entorhinal cortex brain region is significantly reduced in the preclinical stages of
AD [36]. These findings suggest that the entorhinal cortex exhibits structural and metabolic
impairments in the preclinical stages of AD, earlier than other brain regions. Our study
provides evidence from the perspective of machine learning for the important role of
entorhinal in predicting Alzheimer’s disease. It suggests that the entorhinal region is more
important in predicting the conversion status in the early stage of AD, as known from the
prediction within a five-year follow up period in our study. Meanwhile, we also discovered
the inferior temporal region is more important in predicting the conversion status of AD
in the same period. The inferior temporal gyrus plays an important role in verbal fluency,
a cognitive function affected early in the onset of AD [37]. Our findings also provide a
machine learning explanation about it.

However, although only using a cognitive test cannot complete the classification task
satisfactorily, it is not to say cognitive test is meaningless for predicting MCI converting to
AD. As shown in Figure 3c, at three years’ follow-up, the importance of the cognitive test
gains the upper hand.

Belleville et al. (2017) found measures of verbal memory and language tests have
a high predictive value for the progression from mild cognitive impairment (MCI) to
dementia [21]. To put it differently, basic screening instruments, such as the MMSE,
exhibit adequate precision in forecasting transitions. Devanand et al. (2007) pointed out
that the integration of these MRI volumes with age and cognitive measures results in
remarkably high levels of predictive accuracy, which could potentially have significant
clinical implications [17]. While this finding did not consider the time cumulative effect,
in our study, by considering prediction at different follow-up periods, we revealed that
incorporating demographic and cognitive measurements into MRI results could slightly
improve the prediction performance for future one-year prediction. The improvement was
more significant for other future time periods.

Based on the trade-off among importance feature ranking, performances, and the
cost, we recommend, for MCI patients, using MRI for predicting dementia status as a
relatively accurate and cost-efficient method of short-term and long-term prediction, and
using cognitive measures for mid-term prediction.

In terms of a three-year follow-up period, we found many interactions in feature
importance ranking (Figure 3c). Thus, we conducted a comparative study considering
interaction effects versus not considering interaction effects in the test dataset. The main
performance indicators, accuracy, sensitivity, specificity, and AUC, were 0.75, 0.78, 0.73,
and 0.81 (with interaction effects) compared to 0.72, 0.76, 0.68, and 0.78 (without interaction
effects), respectively. It can be found that considering interaction improves the predic-
tion performance to a certain extent. Our consideration of interaction effects and their
visual interpretation offers opportunities for etiological research, improving model inter-
pretability by identifying complex relationships between independent variables. Moreover,
incorporating interaction effects improves model performance.

The strength of this article is, although various research studies have been conducted
to examine Alzheimer’s disease, their primary focus is on the accuracy of benchmark ML
algorithms. Moreover, we also focus on the interpretability.
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Our study has demonstrated the interpretability of EBMs, incorporating both global
and local interpretability techniques. Global interpretability offers a holistic understanding
of the model’s behavior, while local interpretability explains results at an individual level.
The EBMs results provide interpretable variable importance and interaction effects, aiding
clinical decision making and alleviating concerns about the application of machine learning
in healthcare.

To put it more broadly, utilizing the EBM model will increase the trust in Deep Learn-
ing. The more the public’s confidence in Deep Learning is, the more medical professionals
will use it, allowing them to encourage innovation and accelerate the adoption of next-
generation capabilities.

There are some limitations in the current study. In terms of variable selection, we will
explain in the literature the variables that are important for predicting AD and include them
in our study. In fact, we also attempted a data-driven approach to automatically selecting
variables, but the results were not as good as using the recommended variables from the
previous literature combined with manual screening. Our research is not only aimed at
achieving good accuracy, but also concerns interpretability. We use the interpretable EBM
method to rank the importance of the variables previously found in the literature, which
can be seen as a refinement and extension of previous research. Furthermore, we plan to
apply interpretable learning methods to investigate the impact of hippocampal subfield
segmentation on MCI to AD prediction.

5. Conclusions

In conclusion, we utilized EBMs model to predict the conversion from MCI to AD at
different follow-up periods and provided both global and local explanations. Our results
showed that the best prediction performance was achieved by combining MRI measure-
ments, cognitive tests, demographic, and clinical indicators. It may be helpful for early
treatment interventions in order to slow cognitive decline and delay the onset of dementia.

Furthermore, regarding the importance of feature-ranking the performances we ob-
tained, we advise clinicians to use different indicators for the prediction of cognitive
impairment in different stages to maximize the benefits.
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